
“Finding the assay - natural language processing
for biomedical scientific literature”

Project 1 thesis, Data Science stream

Master of Research in Biomedical Research (Data Science)

14th of March 2021

Supervisors: Joram M Posma, Tim Beck

Author: Filip Makraduli

Acknowledgments

I would like to thank my principal mentor Joram M. Posma, and secondary

mentor Tim Beck for their tireless support and thoughtful insight throughout this project.

Also, Yan Hu, Joy Li and the other members in our research group.

All code can be accessed at https://github.com/fm1320/IC_NLP.

The link for the website is:

https://share.streamlit.io/fm1320/ic_nlp/main/streamlit_appv1.py

Sometimes there is a possibility that the hosting service shuts down or there could be a

server error. If this is the case, or for any other questions, feel free to contact the author

of this report at: f.makraduli20@imperial.ac.uk

2

https://github.com/fm1320/IC_NLP
https://share.streamlit.io/fm1320/ic_nlp/main/streamlit_appv1.py
mailto:f.makraduli20@imperial.ac.uk

Originality statement

‘I hereby declare that this submission is my own work, product of my own work, conducted

during the current year of the MRes in Biomedical Research at Imperial College London.

To the best of my knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the award of any

other degree or diploma at Imperial College London or any other educational institution, except

where due acknowledgement is made in the thesis. Any contribution made to the research by

others, with whom I have worked at Imperial College London or elsewhere, is explicitly

acknowledged in the thesis. I also declare that the intellectual content of this thesis is the

product of my own work, except to the extent that assistance from others in the project's design

and conception or in style, presentation and linguistic expression is acknowledged.’

3

Abbreviations

MWAS - Metabolome-wide association studies
GWAS - Genome-wide association studies

NLP - Natural language processing
SVM - Support vector machine

RBM - Reduced boltzmann machines
RNN - Recurrent neural network

LSTM - Long short term memory (network architecture)
GPT - Generative Pre-trained Transformer

BERT - Bidirectional Encoder Representations from Transformers
PMC - PubMed Central

NER - Named entity recognition
NMR - Nuclear magnetic resonance
CNN - Convolutional neural network
SGD - Stochastic gradient descent

CSV - Comma separated values (file type)
JSON - JavaScript Object Notation (file type)

NLI - Natural Language Inference
MNLI - Multi-(Genre) Natural Language Inference

LC - Liquid chromatography
MS - Mass spectrometry

IAO - Information Artefact Ontology
OBI - Open Biomedical Investigations

Table of contents

Topic, page number
--
Acknowledgments 2
Originality statement 3
Abstract 5
1. Introduction 6
2. Data and models 14
Data 14
Models 19
3. Results 30
Deployment 36
4. Discussions 38
5. Future work 42
6. Conclusion 43
References 44
Appendix A 48
Appendix B 51

4

Abstract

Assays are a key element in many biomedical research studies, notably in MWAS

(Metabolome-wide association studies) and GWAS (Genome-wide association studies).

Assays convey the information about reproducibility and replicability of the studies, as it

is important to know with what technology data was acquired. These aspects are crucial

in any scientific research. Furthermore, data curation and database creation efforts are

being made to classify GWAS and MWAS in databases. Accelerating these efforts of

database creation is important too because of the large number of studies published in

the domain. Natural language processing techniques can be utilized to automatically

classify these scientific papers. In this thesis, with the help of biomedical domain experts,

a list of assays was compiled and used as a reference. The main aim was to create a

robust, adaptable, and easy to use text-processing pipeline tool that would recognize

assays in text, but also serve as a good starting point for the implementation of other

algorithms and entity recognition tasks. In the thesis, this was achieved by performing

data annotation and data preprocessing of over 2500 biomedical articles, exploring and

implementing both string matching and deep learning-based models for named entity

recognition, and using transformer-based architecture to augment the usefulness of

assay recognition. Everything was deployed to a working ready-to-use public website. In

this project, it was hypothesized that deep learning algorithms would perform better in

named entity recognition due to their ability to generalize. However, the results did not

prove this hypothesis, and it was shown that simple regular expression and string

matching algorithms can perform better and be more adaptable and easier to use for the

task of named entity recognition. It was also revealed that using more complex

transformer-based and deep learning algorithms can be of better use in other natural

language processing tasks such as summarization, question answering, natural

language inference, and topic modeling. These findings also opened up a lot of

possibilities for future work in natural language processing for biomedical texts.

5

1. Introduction

1.1 Background and related work

Machine learning models became available to bigger audiences as the result of the

developments in computer hardware in the early twenty-first century. This was, to a great extent,

due to the accessibility and price of computing power which became cheaper thus allowing

machine learning algorithms to be tested and explored. Such developments can be attributed to

better computer hardware design, computer chips were able to process more and more

operations and got smaller and smaller in size. A pivotal moment was the design of the

graphical processing unit (McClanahan, 2010), a hardware architecture still being used today. In

the past, before these computing resources became widespread, deep learning algorithms were

mostly just theoretical concepts in mathematics, the applied and experimental nature of these

subjects was pretty much non-existent. Only certain machine learning paradigms such as SVMs

(support vector machines) were in popular use. Concepts like neural networks and perceptrons

were present, but not in broader use. RBM (reduced boltzmann machines) too popularized the

take off of deep learning. The wider usages and opportunities to gain empirical knowledge about

the deep learning aspect of machine learning proved to be crucial in the development of these

fields and the birth of Data Science. This rise of various machine learning methods had spread

to many industries and research areas. One such area of application is the biomedical sciences

where these methods can solve different problems. A popular field of research and application is

natural language processing (NLP). Natural language processing stems from human curiosity to

not only process text but understands human language. During the early years of machine

learning and artificial intelligence, understanding human language was deemed a very difficult

task. At the beginning of the 20th-century, natural language processing revolved around simple

prediction tasks.

A development in natural language processing was the “word-to-vector” algorithm in 2013

(Mikolov et al., 2013). During these years most of the state-of-the-art research in machine

6

learning had been centered in computer vision, but this discovery of the word-to-vector

algorithm was the beginning of the rise of natural language processing. It is the first paper that

tries to contextualize human language in terms of understanding relations between words. The

meaning of this is that vectors that signify a similar word would also have a similar numeric

representation. For example, the word “dog” and the word “cat” would have high similarity

values compared to “waterfall” and “carrot”. This architecture was a step in the right direction in

understanding human language, but human language and sentiment are too complex to only be

communicated through words. A lot of the meaning in language is represented with sentence

structures, metaphors, idiomatic expressions, and the majority of these meanings cannot be

deduced from only words. Efforts to tackle this problem were made using Recurrent Neural

Network (RNN) architectures (Liu et al., 2016), which can encode temporal information to a

certain degree. This had helped in the understanding of sentence structures but there were still

limitations. Most notably, situations where words at the beginning of the sentences referred to

ones in the end. An improvement was the introduction of Long Short Term Memory (LSTM)

networks which enabled “memory”. This meant there was now a way to encode information from

words at the beginning of the sentences so they could later be remembered about other words.

These networks were quite successful for certain tasks in NLP and are still used today in a lot of

applied or industry-related projects. This architecture was first introduced in the 1990s

(Hochreiter & Schmidhuber, 1997), but only decades later was the scientific community able to

widely use it in NLP tasks, due to the limitations of computing power already mentioned in the

introduction above. The key feature of these networks (RNN and LSTM) is the sequential

processing of words. These networks process the text word by word, and each encoding of a

word is dependent on the encoding of the previous word. The encoding of the previous word is

called a hidden state. The difference between RNNs and LSTMs is that the latter has a

characteristic where the hidden states influence words further in the sentence. An obvious

problem with this architecture is the fact these hidden states deteriorate over time. This means

7

that words at the beginning of the sentences lose their influence towards the end of the

sentences. There are ways to minimize this effect and one option is to use bi-directional

architectures. One such example used in one of the discussed solutions in this paper is the

BiRNN architecture (Schuster & Paliwal, 1997) presented in figure 1.1.

Fig 1.1- A bidirectional recurrent neural network architecture,
source: Anand, Ankesh & Chakraborty, Tanmoy & Park, Noseong. (2016).
We used Neural Networks to Detect Click baits: You won't believe what happened next!.

In this neural network, the sentences are encoded from both directions, end to beginning and

beginning to end, this enables a more generalized understanding of the words which better

models language. Also, before this encoding happens, word embeddings are calculated using

algorithms similar to the already mentioned word-to-vector algorithm.

A major advancement in the NLP world came with the introduction of Transformer architectures

in late 2017. The main goal of this architecture is to avoid the recurrent nature of the RNNs and

LSTMs and instead process text in a parallel manner instead of the sequential step-by-step

manner. This meant that Transformer networks do not exhibit the problem of vanishing influence

8

of words. Transformers work using a three-step process. First, the words in a sentence are

processed in parallel feeding the whole sentence or passage in the model. Then, positional

embeddings are assigned to words, to signify their position in the sentence. Third, the similarity

between the words is calculated using a mechanism which the authors have called self-attention

(Vaswani et al., 2017). This mechanism additionally helps the algorithm understand which part

of the sentence is important and which is not. Transformers has proven to be a state-of-the-art

solution for many NLP tasks, usually in tasks that require broad language modeling such as

summarization, translation, question answering, etc. Using the concepts of this paper, a lot of

other popular transformer-based algorithms have been developed, most influential being BERT,

GPT, XLNet (Devlin et al., 2019),(Brown et al., 2020),(Yang et al., 2020). One negative aspect of

these architectures is their data “hungry” nature. This is evident if we take a look at the

computing resources needed to achieve state-of-the-art results in all the papers that involve

transformers. A lot of processing power and data is needed to train these architectures from

scratch. Efforts have been made to mitigate this problem with various architectures like

DistilBERT and Reformer (Sanh et al., 2020),(Kitaev et al., 2020) that try to make transformers

less costly to replicate. A paper worth mentioning is the T5 transformer - Exploring the Limits of

Transfer Learning with a Unified Text-to-Text Transformer (Raffel et al., 2020) which eases the

task of pre-training and fine-tuning transformers by making a lot of NLP tasks a text-to-text

architecture. To put it simply, instead of training a few architectures for various tasks, only one

architecture is trained and then the same one is fine-tuned for different tasks. No need to use

one model for summarization and another for question answering. This improves the versatility

of using transformer architectures, and a pre-trained model of this architecture is used for a

summarization task in this report. Most results in deep learning and machine learning are

empirical. This means that besides the theoretical study of new algorithms and the chase of

“state-of-the-art” results, there is substantial progress to be made in the applied areas of this

science. One prominent example is Data Science applied in the area of biomedical sciences. In

9

these sciences, machine learning and deep learning methods need to be adapted to specific

tasks suited for each field with unique terminology.

Many of the state-of-the-art NLP algorithms are computationally intensive and require lots of

data to train. This makes the entry margins of their reproduction quite narrow. Also, for a lot of

scientific use cases, scientists want to be able to try things from scratch and not depend on a

ready-made solution. Another difficulty with biomedical research papers is the sheer number of

studies conducted with millions of papers into publishing right now. A robust and easy-to-use

processing tool, which would filter out these papers according to certain characteristics, would

tackle this difficulty. Another reason for such a tool is the efforts in GWAS and MWAS scientific

communities in making scientific paper databases and logs. Natural language processing

techniques have high applicability in such a situation.

Problem statement introduction

In this report, the main task is automatic named entity recognition (NER). This is a

common task in the realm of NLP and has been researched thoroughly in the world of NLP.

Many NER datasets have generic entity labels like people, companies, countries, etc. Many

solutions in this area with these datasets achieve state-of-the-art results. However, when

specific case entities in a given domain are discussed, these generic systems don’t perform as

well. For unique applications, like the biomedical domain in this report, certain alterations,

tuning, and data-preprocessing are needed for a working solution. Framing the problem of this

report as a NER task is done because once it is solved, it can be used to perform other NLP

tasks where specific domain knowledge plays less of a role. Also, more complex algorithms can

be applied on top of NER, which would augment the usefulness of solving this task. For

example, once the desired entities are recognized, it is possible to do other NLP tasks including,

but not limited to: contextual summarization, question answering, topic classification. This is why

the work in this report is centered around NER, but it does not limit itself to only NER. The

10

solution would enable scientists to cycle through the results of millions of research papers and

categorize them by topic, style, results, expertise, etc.

The approach was to use specific scientific domain knowledge of the subject to implement an

NLP solution that can be computationally efficient, reproducible, and requires less data to train.

In this case, the entity that is being recognized is what type of laboratory assay is used in the

study. Assays are analytical or laboratory procedures used to recognize, quantify or detect a

compound, element, or substance. They are usually used in sciences related to physics,

chemistry, biochemistry, and pharmacology. Prominent examples here are spectrometry and

spectroscopy techniques such as Proton nuclear magnetic resonance (PNMR), Liquid

chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FTIR),

Raman spectroscopy, etc. Used in the context of GWAS and MWAS articles, assays are crucial

for their categorization (Bush & Moore, 2012), (Goodwin et al., 2016). One of the most important

aspects of these studies, but also science in general, is the ability to accurately reproduce and

replicate the generated results.

By understanding which assays are used, researchers know which papers are closely related to

their work thus enabling filtering by their preferences.

Hypothesis

1. The first hypothesis is that for a task like entity recognition, simpler (RNN, LSTM, or CNN

based) deep learning models will outperform string matching/regular expressions-based

algorithms because of their ability to generalize.

2. The second hypothesis states that these simpler deep learning models also perform better

compared to more complex architectures (transformers) that require a lot of compute and large

training sets.

11

Aims & Objectives

The estimate is that the task of named entity recognition of assays can be executed to a

satisfactory degree of accuracy and reproducibility with the combination of deep learning and

rule-based approaches while also exploring other NLP tasks in efforts to create a scientific text

processing pipeline that would aid scientists in their search and curation needs. Identifying

assays is a central task of this report, but other NLP tasks are also explored. Also, simple string

matching-based algorithms are explored, as some have been used in the context of medical

sciences (Lovis & Baud, 2000), as predecessors to complex deep learning algorithms.

● The first aim is to preprocess and extract relevant data from 2500+ research articles

and papers from various scientific journals.

An objective is to use the AutoCORPus library (Hu et al., 2021) for the

extraction.

● The second aim is to pre-process the data in ways to be suitable as an input for the

named entity recognition algorithms.

To simplify the process of replicating our model, an automatic annotator tool was

created. This was the main objective as part of the second aim. The

annotation of unlabeled data is an issue in many data science applications.

Recognizing this need, a data annotator using regular expressions was created.

This significantly increases the speed of deploying a named entity recognition

enabling users to start creating their model with their data if desired. This

annotator can be upgraded with a manual annotation tool but serves as a great

starting point for this type, and other types of tasks.

● The third aim is to train (1) deep learning and (2) rule-based string matching

able to solve the NER task to a satisfactory level of accuracy while also maintaining the

ability to replicate and modify the models.

12

The objective was to explore different deep learning models and choose a

model that is easy to adapt and deploy while not compromising accuracy. Also,

good documentation with a variety of pre-trained options is available. That is the

reason for the choice of Spacy v2.2.4

● The fourth aim was to expand and augment the usefulness of named entity recognition

by leveraging that information for more complex problems.

An objective here is to use transformer networks as a proof of concept that they

can be used on top of other tasks to expand the information conveyed by named

entities.

In the end, other NLP tasks like summarization are added, and as a sub-aim,

everything is deployed to an interactive web app for users to get a practical feel

of the algorithms. It is important to note that recently, transformer-based

architectures have been a “go-to” solution for any NLP task.

This report presents an NLP pipeline for biomedical text processing, centered to laboratory

assay recognition while also keeping into consideration the necessity of replication, efficiency,

and ease of access in the scientific community.

13

2. Data and models

2.1 Data

2.1.1 Data source

Data were obtained from almost 2500 scientific papers in various peer-reviewed medical

journals in the area of biomedical sciences, predominantly scientific papers in genomics,

metabolomics, and cancer medicine. More precisely there are 1200 PubMed Central (PMC)

full-text publications of GWAS (Genome-wide association studies) whose summary level data is

incorporated in GWAS-Central and 1241 PMC full-text publications on MWAS (Metabolome

wide association studies).

2.1.2 Data pre-processing

Throughout this project, the programming language is Python for all the tasks. Besides the

functionalities of the native Python language, other Python libraries and packages are used.

They will be covered in more detail for each area of use accordingly. The text from the scientific

papers was not used fully, but sections of interest were extracted. In this case, the sections of

interest were those where laboratory assays are mentioned. These sections have headers such

as: “Materials and methods” or “Methods” depending on the journal. As the title of these

sections can have many variations of the words “materials” and “methods'' in the title, a Python

package was used in solving the problem. It uses a combination of rule-based matching

synonyms from the Information Artefact Ontology (IAO) and a digraph model to predict the most

likely header for a given section. The Information Artefact Ontology (IAO) is an ontology of

information entities in Biomedical investigations. This ontology was created and is maintained

by the Open Biomedical Investigations (OBI) consortium. The Python package is called

Auto-CORPus (Hu et al., 2021) and was developed by students from the same research group

where this project is. Here it has been applied to relevant research papers. The package, once

configured and run on a dataset, outputs three folders: “abbreviations”, “main text” and “tables”.

14

This means that for each paper that is processed, three JSON text files are generated: a file of

the abbreviations in the text, a file of the main text divided into sections, and a file of the tables.

Here, only the JSON file for the main text is used. In this folder JSON files for each scientific

paper are generated and text is divided into sections by tracking IAO (Information Artefact

Ontology) terms for each section. These terms make the division of paragraphs easier as they

provide universal identifiers for the sections and section headings. The output JSON file format

is presented in image 2.1.1.

2.1.1(a) - Main Text output file 2.1.1(b) - Abbreviations output file

This enables filtering by IAO terms. For assay recognition in this report, the relevant sections

that are extracted from the papers are the ones where the materials and methods are

discussed. They can usually either be found either after the introduction or at the end of the

paper, but are not always in the same location. This points to the fact why a python package is

needed and why standardization is important. This point holds for all MWAS and GWAS papers.

By locating areas of interest, less text is processed. This saves computing power and makes the

text more information-dense because only parts where assays are mentioned and discussed

are sampled.

15

2.1.3 Data annotation

One recurring issue in NLP but also machine learning, in general, is the low availability of

annotated datasets. The annotation step is essential for designing deep learning algorithms but

it is time-consuming and a tedious task. This step is a major hurdle for developing machine

learning applications - even prototypes. In this project there was no annotated data available,

hence solving the problem of data annotation was instrumental. A situation like this is an issue

before creating a deep learning model of any kind. One common approach is doing the process

of annotation manually, where humans label training data by hand. Many tools assist this

process, such as Prodigy (Prodigy · An Annotation Tool for AI, Machine Learning & NLP, n.d.)

and (Doccano/Doccano, 2018/2021). While this process is a viable solution for many

applications, manual annotation takes a lot of time and needs to be done from the beginning for

each new task (Neves & Ševa, 2021). Manual annotation generates good quality examples, but

for simpler tasks like Named entity recognition, having a system that automatically does the

process of annotation can be an advantage. Having these problems in mind, as part of this

project, an automatic annotation method was designed by us. It offers:

- Quick annotation of thousands of examples in a matter of minutes

- Robust and easy to use and/or implement for any entity type and number

- Useful with different annotation formats

These annotations were created to be used with the python library Spacy (Honnibal & Montani,

2017). In the later chapters of this report, the deep learning aspect of this library will be

discussed. This library mainly uses two annotation schemes, spacy annotations, and beginning

inside-outside (BIO) annotations.

The annotator in this paper can output all three types of annotated data. The steps for data

annotation are as follows:

16

1. A list of laboratory assays was compiled by experts and researchers in the areas of

MWAS and GWAS. This list is used for annotating the assays as entities but it is also in

the “Models” section where it is further referenced. This list is easily updatable,

appendable, and modifiable. It is saved as a comma-separated (CSV) file and available

in Appendix A.

2. The text is imported and relevant sections of interest are extracted with the Auto Corpus

package as explained above. Afterward, as per Spacy’s data annotation requirements,

the text is divided into sentences. This can be done either using various rule-based

approaches or unsupervised learning techniques (Kiss & Strunk, 2006). In this report,

both a Spacy pipeline component for rule-based sentence boundary detection and a

regular expression rule-based approach was used (Regular expressions are explained

more thoroughly in the next chapter but also Appendix A).

3. The entities that need to be recognized are saved to a .csv file and handled using the

Pandas python library. This is done because Pandas works well with large files posing

fewer limitations in the .csv file size. Afterward, string matching techniques are used to

locate the entities and the character range of the entity match counted from the

beginning of the sentence. This is done using the regular expression library re in python.

One problem that arises in this step is the situation of overlapping entities. For example,

the entity “1H-NMR Spectroscopy” would be recognized as multiple inter-entity matches

(depending on how many are mentioned in the .csv file): “1H-NMR”,” NMR”,” NMR

Spectroscopy”, etc. This will generate overlapping character spans for each match and

this is against the annotation rules of the Spacy library. An example of this situation is

shown in figure 2.1.3.1. (Source: algorithm is applied to a dummy sentence)

17

Figure 2.1.3.1 - An illustration of the problem of overlapping entities

This is solved by using a statistical method called the Jaccard index (Jaccard, 1901).

This is a method that calculates the similarity between two non infinite sets using the

ratio between the absolute values of the intersection() and union() of two sets. This∩ ∪

method is also known as the Tanimoto index. The mathematical expression for this

method is illustrated with the equation:

𝐽(𝐴, 𝐵) = | 𝐴 ∩ 𝐵 | / | 𝐴 ∪ 𝐵 |

The index ranges between meaning that an index of is0 ≤ 𝐽(𝐴, 𝐵) ≤ 1 1

calculated when there is an overlap, and when there is no overlap. This method has0

the advantage of also calculating the level of similarity. The index can have values

between 0 and 1, and the closer the value is to 1, the higher the similarity between the

sets. Set is a distinct collection of elements. To utilize the Jaccard index, each match is

assigned to a set where the first element is the first character matched and the last

element is the last element matched. Following the example in figure 1.3.1, the following

sets can be created: “NMR”={50,51,52}, “1H-NMR”={47,48,49,50,51,52}, and “NMR

spectroscopy”={50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65}. Once the character

spans of the matches are in this format, the set operations specified in the equation

above can be performed. This is implemented using native Python.

4. The final part of the data annotator is the specified output. Files are outputted in a JSON

format for the spacy annotation scheme. Scripts are also available to convert this

18

annotation to BIO format or gold standard annotations. In picture 2.1.3.2 the snapshot of

the output format is shown.

2.1.3.2 - Final output format where the model annotates “tandem mass spectrometry”

This automatic annotator procedure can serve as a starting point even for application

beyond this report where the precise human manual annotation is needed. There it can

serve as a baseline for judging the human annotations and provide valuable inputs for

scientists.

2.2 Models

In this report, three types of model paradigms were tried. A rule-based model using

regular expressions, a Spacy-based deep learning model, and a transformer-based

model. The first two tackle the problem of named entity recognition directly, whereas the

transformer-based models are used after the named entity recognition to augment the

results and get more insight into the data. The idea is to use simple, quick, and versatile

algorithms for the named entity recognition and only afterward use complex

transformer-based networks. This is to leverage their power and suitability for more

complex tasks that require contextualization. All code details are provided on the Github

account of this project at www.github.com/fm1320/IC_NLP

19

http://www.github.com/fm1320/IC_NLP

2.2.1 Regular expressions and string matching model

Regular expressions are a sequence of characters that define a search pattern in

strings. These regular expressions and string matching models were chosen because of

the computational efficiency and easy adaptability compared to a deep learning model.

Although Python-based regular expressions are slower than the Thompsons NFA

algorithm (Appendix A), they are still better in terms of time complexity compared to

deep learning models. Furthermore, if there is a change in the data the whole model can

be easily adapted and there is no need for re-training. Besides the already mentioned

regular expressions algorithm, a native string matching python algorithm is also used in

this report. The python string matching algorithm works by using comparison operators

at a bytecode level. In figure 2.2.1.1. a time complexity test carried out using the native

python timeit library is presented. To emulate the use case in this paper, an example

chosen was the recognition of “NMR'' in the made-up sentence “LC/MS is a popular

technique, however more prevalent in the scientific community is the NMR”. In this

report, both string matching algorithms and regular expressions algorithms were used.

Although python’s string matching is considerably faster, regular expressions were used

for their features of non-literal string matching.

Algorithm: Number of loops: Time: Best of how many:

Regular
expressions

1 000 000 195 ns per loop 5 iterations

String matching 5 000 000 53.5 ns per loop 5 iterations
Fig 2.2.1.1 - Time complexity comparison of string matching and Regular expressions

The named entity recognition using these algorithms is performed in two ways.

20

1. The entity recognition is done by matching the entities needed to be recognized

from the .csv file (mentioned in step 1. of “Data Annotation”) to the target text. In

this case, python native string matching can be used as well as regular

expressions. The matching returns all occurrences of the entities and also is case

insensitive.

2. The entity recognition is done by extracting the whole sentences that have at

least one of the entities. This is implemented only using regular expressions.

Whole sentences are extracted because later on, they serve as an input to

transformer summarization models. Also, sentences are visually intuitive for the

user.

2.2.2 Spacy deep learning-based model

The deep learning model used in this project is Spacy’s NER model (Honnibal &

Montani, 2017). This model is a variation of a residual convolutional neural network with

bloom embeddings (Serrà & Karatzoglou, 2017). It is adapted for custom entity

recognition, certain hyperparameters are tuned, and different pre-training models are

tried. This NER deep learning model is one piece of a text processing pipeline with which

Spacy operates. Before presenting the details of the deep learning model, Spacy’s

library text processing structure is explained. Spacy version last tested with: v2.2.4 and

compatible with: spaCy v2.1.0+. Spacy was chosen for its ease of upgrading, modifying,

and reputation as a production-grade software library.

2.2.2.a Spacy library structure

The Language class, the Vocab, and the Doc object are the core data structures of

spacy. To process a text and convert it into a Doc object, the Language class is used. It

is stored as a variable called “nlp”. The sequence of tokens and all their annotations are

operated by the Doc object. This general structure is shown in figure 2.2.2.1.

21

Fig 2.2.2.1 - Spacy library structure, source: Spacy’s official documentation

The Doc object is built by the Tokenizer, and then can be modified by the pipeline

components. These components are coordinated by the Language Object. It takes raw

text as input and returns an annotated document via the pipeline. It also orchestrates

serialization and preparation.

Spacy’s processing pipeline can contain many components. The order of these

components can be seen in figure 2.2.2.2. Before the application of any of the pipelines,

the input text is tokenized with the “tokenizer” component. Tokenization means dividing a

text into meaningful chunks. Spacy uses a tokenization rule-based algorithm that is

specific to the language of the text. The NLTK v3.2.5 library also works well as a

tokenizer. That is why, separate models exist for English, Spanish, Macedonian, etc.

First, the text is split on whitespace characters, and then rules about prefixes and

suffixes are checked to divide the text into tokens. The “tagger” and “parser” components

are used to identify parts of speech and their relations with one another. In the case of

this report, these pipelines can be used in conjunction with regular expressions. Since

the assays that need to be recognized are nouns, instead of just dividing the text into

sentences, as explained in the previous chapter 1. Data, the tagger, and parser can be

22

utilized to extract noun chunks and then the entity recognition can be applied to a

smaller amount of text. This is a good choice if the user wants to apply a computationally

intensive task after the noun chunk extraction. In the context of named entity recognition,

it does not change the result evaluation, so this is left as a feature of the project.

Fig 2.2.2.2 - Spacy pipeline structure, source: Spacy’s official documentation

The “ner” component is the one of most interest. In this project, a custom “ner” pipeline

component is added and trained on the annotated data from the previous chapters.

2.2.2.b Spacy named entity recognition

Spacy uses a named entity recognition system that combines multiple technologies. It

uses something called “bloom” embeddings, which is a more compact way of embedding

words. Furthermore, a residual convolutional neural network is used for encoding words.

This combination of different concepts is in order to get high efficiency, accuracy, and

adaptability. Spacy’s NER model works according to these steps:

Embed: Embedding of words is done with bloom filters. This means that instead of

saving words, the words are hashed and the hashes are saved in a dictionary. This

makes word embeddings to have better compactness, but the downside is the possibility

of some words having the same vector representations. Different default Spacy models

have different amounts of words that are represented with the same vector.

Encode: Context of words is taken into account by encoding word lists to sentence

matrices. Convolutional neural networks are used for the encoding. This step can be

done by LSTMs or RNNs too. However Spacy’s creators have chosen a Convolutional

neural network and one of the reasons is speed (Honnibal & Montani, 2017).

23

Attend: The attention mechanism helps in understanding which parts are more

information dense given a query. The output is a feature vector with all the important

features included from the other vectors. (Similar to a weighted sum)

Predict: Spacy uses a multi-layer feed forward network for inferring to which class the

word belongs.

Fig 2.2.2.3 - The architecture of Spacy’s NER model, source: Spacy’s documentation

Spacy has 3 pre-trained English models: en_core_web_sm, en_core_web_md,

en_core_web_lg. These models can predict the following default entities:

24

cardinal number, date , event, facility, geo-political entity, language, law, location, money,

nationalities or religious or political groups, ordinal numbers, organisations, persent,

person, product, quantity, time, work of art. For these named entity recognition tasks

they perform quite well.

According to their tests (Honnibal & Montani, 2017), a reported accuracy of at least 85%

in NER on the Onto Notes release 5.0 is achieved. (Weischedel, Ralph et al., n.d.).

However, in the case of predicting custom entities, this level of accuracy is difficult to

maintain.

2.2.2.c Custom named entity recognition

To leverage the abilities of transfer learning an approach, a pre-trained model was used.

However, due to the occurrence of the “catastrophic forgetting problem” (McCloskey &

Cohen, 1989). This is a problem when neural networks, when assigned to learn new

tasks, “forget'' what they have learned in the tasks before. There is no need to recognize

default entities, the pre-training models had no previous knowledge of recognizing any

entity. There are ways to circumvent the “catastrophic forgetting problem”, such as

pseudo rehearsal (Atkinson et al., 2021), this was not needed in the context of assay

recognition. It would be needed if multiple assays are recognized. The parameters tuning

of the model was set-up following the recommendations in (Honnibal & Montani, 2017).

The process can be summed up with the following settings:

Data and hardware

Almost the entirety of the data mentioned in the Data section has been used for training,

a certain amount of publications (<50) from the domain were chosen for testing the

model. This was done to train a model on the biggest amount of data available. The

training hardware that was used was Google Colaboratory. This is a free service that

offers GPU computation power in a Jupyter notebook editing interface. The types of

GPUs available in Colab vary over time. The available GPUs include Nvidia K80s, T4s,

25

P4s, and P100s. RAM size of 12GB is included. As this is a free service, choosing

explicitly which resources are available at a given point in time is not possible. The

hardware provided was sufficient to train the models with an average training time of 64

min per 45 epochs.

The training was done by dividing the data into 7 batches with the first two batches

trained for 80 epochs and the other 5 with 45 epochs.

Pre-training

The model weights were initialized trying each of the three Spacy trained English

models: en_core_web_sm, en_core_web_md, en_core_web_lg. Afterward,

experimentally, the best performing pre-trained model was chosen.

Parameters

Compounding affects the calculation of the loss function, it is advised that the values

move from lower values to higher values. In this way, the loss is calculated on a few

examples first and then slowly transitions towards calculations on more examples. This

helps the model generalize better. The learning rate was kept as advised by the

documentation at a value of 0.001. The optimizer that was used was Stochastic

gradient descent (SGD). Due to the sparse nature of the text, SGD based optimizers

often perform well in natural language processing tasks

Random shuffle is performed at the beginning of training to increase variance in the

data and eliminate the chance for a bias towards a certain entity type

A dropout of 35% is used as a regularization technique and prevention of overfitting.

The range between 20% and 40% can also be used as it yields similar results when

tested in this project. It is important to note that the dropout is dependent on the size of

the dataset. A high dropout percentage might inhibit the learning of the model. This was

not the case in this report. In figure 2.2.2.4 these parameters are highlighted.

26

Fig 2.2.2.4 - Code snippet of tuned hyper-parameters

2.2.3 Transformer based models

Many previous studies have used transformers for named entity recognition and the task

of fine-tuning them has been a common approach in scientific work. One notable

example is the area of biomedical sciences is BioBERT (Lee et al., 2020). This was part

of the reason why a different path was chosen in this project, approaching it in a different

less explored way.

2.2.3a Natural Language Inference

Natural language processing is a very exciting area. Some fairly effective methods of

learning from the vast amount of unmarked data available have been identified.

One big drawback of transformer models in NLP is their size. They have a large number

of parameters and this makes them difficult to apply in practical scenarios, especially

when annotated data is scarce. However, recent advancements have shown that

language models encode a lot of information in their weights (Brown et al., 2020) and

can perform well on downstream tasks with less specific training data. Or as quoted in

(Petroni et al., 2019) “The surprisingly strong ability of these models to recall factual

knowledge without any fine-tuning demonstrates their potential as unsupervised

open-domain QA systems”.

2.2.3b Zero-Shot learning

27

Zero-shot learning can broadly be defined as the “application of a model to solve a task

for which it has received no specific training before”. A prominent example is (Radford et

al., 2019) where the model is tested on tasks it hasn’t been trained in.

The model in use in this report does this by creating a pair of two words, a hypothesis,

and a premise. Afterward, it is evaluated whether the pairs are a: contradiction(false),

entailment(truth), or neutral. To understand multiple topics, a lot of word pairs are

modeled. The idea is to take the sequence of interest and label it as the "premise" and

turn each candidate label into a "hypothesis." If the model predicts that the premise

"entails" the hypothesis, the label is taken to be true. This is used “out of the box” as

proposed by (Yin et al., 2019) and using the Hugging face and Transformers python

library. In this way, a multiple candidate label natural language inference is performed.

2.2.3c Usage

A zero-shot pipeline using the Bart-large-MNLI model (Lewis et al., 2019) is

implemented. BART was used because Inputs to the encoder do not need to be aligned

to the outputs of the decoder thus enabling the addition of noise. If this is done in other

languages, it should be done with other models because BART is only trained in the

English language.

28

Fig 2.2.2.5 - Architecture and training sequence of BART, source: Lewis et al. 2019

This makes it easier to train the model for more tasks which means it has a less limited

applicability to other transformer-based models. It is also suitable for zero-shot learning

(Yin et al., 2019).

The extracted entities using the previously mentioned models are used as candidate

labels for topic modeling in the biomedical text. In this way, named entities serve as

topics to classify their relevance in the texts.

2.2.3d Summarization

The task of text summarization can be divided into two types of summarization:

- Extractive

- Abstractive

The former uses already existing parts of the text to summarize the meaning while the

latter generates new text to summarize the meaning. In the report, extractive

summarization was performed. Contextualized summarization of sections where entities

are present or even summarization of whole paragraphs in scientific literature is a useful

and user-friendly way to encode information about scientific entities.

This summarization is done by the gensim python library and the Text rank extractive

text summarization algorithm (Mihalcea, 2004).

29

3. Results

3.1 Models results

In this chapter, the results in the task of recognition of assays are presented.

3.1.1 Regular expressions model results

This model was evaluated using a confusion matrix. Various metrics were also

calculated from the confusion matrix. The testing text sequence was from the “Materials

and Methods” section of 5 MWAS papers. The evaluation metrics are listed in figure

3.1.1.1

*True Positive (TP): Correctly predicting a label (predicted “1”, true value “1”); True Negative (TN): Correctly
predicting the other label (predicted “0”, true value “0”), False Positive (FP): Falsely Predicting a label
(predicted “1”, true value “0”), False Negative (FN): Missing and incoming label (predicted “0”, true value
“1”).

TRUE POSITIVES TRUE NEGATIVES

PREDICTED POSITIVES 57 0

PREDICTED NEGATIVES 8 805

Measure Value Derivations

Sensitivity 0.8769 TPR = TP / (TP + FN)

Specificity 1.0000 SPC = TN / (FP + TN)

Precision 1.0000 PPV = TP / (TP + FP)

Negative Predictive Value 0.9902 NPV = TN / (TN + FN)

False Positive Rate 0.0000 FPR = FP / (FP + TN)

False Discovery Rate 0.0000 FDR = FP / (FP + TP)

False Negative Rate 0.1231 FNR = FN / (FN + TP)

Accuracy 0.9908 ACC = (TP + TN) / (P + N)

30

F1 Score 0.9344 F1 = 2TP / (2TP + FP +
FN)

Matthews Correlation Coefficient 0.9318 TP*TN - FP*FN /
sqrt((TP+FP)*(TP+FN)*(TN
+FP)*(TN+FN))

Fig 3.1.1.1 - Confusion matrix and evaluation metrics for regular expression model, graphing

source: onlineconfusionmatrix.com

The test set was in a total of 870 words of which 61 were words that are assays(positive

class) and 809 non-assay words (negative class). The full test set is available in the

repository. The confusion matrix is calculated based on how many of the 61 words that

are included in an essay class the model got right. A metric of “full misses” was added.

This includes the cases when a model entirely misses an entity or entirely spots a new

false positive entity. Usually,transformer-based models guess the true positive class but

don’t include all words that construct the entity. This model has: 0 full misses. In figure

3.1.1.2 an excerpt of the testing data is shown and the recognized entities by the regex

model are shown.

The output of the regular expression model lists which entities have been recognized.

The list is not in order, and if there is a repeating entity it is listed once.

31

Fig 3.1.1.2 - Regular expressions model example of evaluated data (*the blue highlights are

drawn for demonstration purposes, the regular expression model only outputs the entity list).

3.1.2 Spacy based deep learning model results

The loss function in the training of the deep learning model is shown on graph 3.1.2.1

This is the last batch, but the pattern of loss minimization was similar when training other

batches. The exact values of the losses and the validation set are provided in the

repository.

Fig 3.1.2.1 - Loss graph of last training batch; x-axis: Epochs , y-axis: Loss value

32

While training, the model was tested using a validation data set of MWAS paper. The

model starts overfitting when there is a sharp decline in the loss values but also a

decline in the F-score. This is when training is stopped. In figure 3.1.2.2 the confusion

matrix and metrics are provided.

TRUE POSITIVES TRUE NEGATIVES

PREDICTED POSITIVES 40 4

PREDICTED NEGATIVES 20 805

Measure Value Derivations

Sensitivity 0.6667 TPR = TP / (TP + FN)

Specificity 0.9951 SPC = TN / (FP + TN)

Precision 0.9091 PPV = TP / (TP + FP)

Negative Predictive Value 0.9758 NPV = TN / (TN + FN)

False Positive Rate 0.0049 FPR = FP / (FP + TN)

False Discovery Rate 0.0909 FDR = FP / (FP + TP)

False Negative Rate 0.3333 FNR = FN / (FN + TP)

Accuracy 0.9724 ACC = (TP + TN) / (P + N)

F1 Score 0.7692 F1 = 2TP / (2TP + FP + FN)

Matthews Correlation
Coefficient

0.7652 TP*TN - FP*FN /
sqrt((TP+FP)*(TP+FN)*(TN+
FP)*(TN+FN))

Fig 3.1.2.2 - Confusion matrix and evaluation metrics for custom deep learning model

Figure 3.1.2.3 shows how this model performs on the same excerpt on which the

previous (regular expression/string matching) model was evaluated.

33

Fig 3.1.2.3 - Examples of guesses by the deep learning model

The model also outputs a table where entities are listed in chronological order and

character spans are defined. It is important to note that some companies like “Thermo

Fisher” still belong to the “ASSAY” class, because these companies are involved in

production of equipment related to assays.

3.1.2 Transformer based models results

In this section, the results of the transformer-based models on the tasks of

summarization and zero-shot topic modeling.

3.1.2a Summarization results

The summarization summarizes the input text from 689 words to 187 words.

34

The example output of extractive summarization is of the introduction section in

(Garcia-Perez et al., 2020). The extracted summarized text is:

“As a result, many published NMR-based metabolic profiling studies for modeling continue to
include putatively identified metabolites and unknown features without providing unequivocal
proof of assignment, or they simply label peaks as ‘unknown’, thereby potentially missing key
mechanistic information. To avoid the problem of multiple entries for the same compound in
databases under different names, a community-wide effort is underway to develop better, faster
and more standardized metabolite identification strategies, such as implementing standard
nomenclature for newly identified metabolites using the International Chemical Identifier
(InChI)17. proposed a four-level system18 for assigning a confidence level to newly identified
metabolites in metabolic profiling studies: 1) positively identified compounds (with a name, a
known structure, a CAS number or an InChI); 2) putatively annotated compounds using spectral
similarity with databases but without chemical reference standard; 3) putatively identified
chemicals within a compound class; and 4) unknown compounds. Commercial packages, such as
Bruker’s AMIX TM software, and open-source software20, such as COLMAR
(http://spinportal.magnet.fsu.edu/), can help with identifying these ‘known unknowns’, and some
of these software applications are capable of automatically or semi-automatically annotating a
limited number of compounds in a biological sample.”

3.1.2b Zero-shot learning results

The resulting example output from the zero-shot learning is given in figure 3.1.2b.1 The

text used was from the abstract section of (Garcia-Perez et al., 2020). These scores are

visually represented in 3.1.2b.1, and they give additional information about the context

and importance of the entities as topics.

Fig 3.1.2b.1 - Scores of each recognized assay

35

3.2 Deployment

3.2.1 Web application

The fully functional website link is available at the GitHub repository as well as all of the

code used in this report. Images 3.2.1.1, 3.2.2.2, and 3.2.3.3 outlines the main structures

of the website.

3.2.1.1 - The home page of the website, the task can be chosen from the left drop-down menu

Fig 3.2.1.2 - Once a task is chosen, a type of model and input method can be chosen

36

Fig 3.2.1.3 - Deep learning algorithms also provide the option of entity choice for recognition

3.2.2. Adapted application for GWAS studies

The regular expression-based model was also applied to GWAS studies as an example

of the adaptability of the model. As ground truth, the table in figure 3.2.2.1 is taken. This

is a table with manually extracted values.

Fig 3.2.2.1 - Manually extracted table of important information in GWAS studies, the highlighted

row is the one presented in greater detail in figure 3.2.2.2.Source: GWAS Central

The first three columns PMID, PMCID, and Platform, can be tackled as a named entity

recognition task and solved with our string matching/regular expression models by

appending these entities to the .csv entity list and editing regular expression patterns.

The last two columns signify how many single-nucleotide polymorphisms (SNPs) have

passed quality control and whether there was imputation present. However,

37

understanding this requires context beyond named entity recognition. This was tested on

the 5 publications above in Fig 3.2.2.1 where the model could recognize PMC, PMCID,

and Platform type. For QC of SNPs and imputation, only parts of the text where some of

these entities are mentioned could be extracted. An example of these techniques

applied to a paper is given in figure 3.2.2.2. The exact recognition of number of SNPs

Fig 3.2.2.2 In the lower part of the figure, highlighted in red, a successful extraction of the amount

of SNPs after quality control. This extraction worked only in 1 out of 10 papers tested.

In the upper part with yellow letters is the relevant passage of the paper as a reference.

4. Discussions

4.1 Regular expressions/string matching model discussion

This model has showcased great accuracy of more than 97% and an F1-score of more

than 93%. This is a compelling result compared to other named entity recognition

systems. These results come with drawbacks. The list of entities that need to be

recognized has to be updated in order for the model to work on new entities. The model

would not be able to adapt to new examples without these adjustments. However, given

these metrics, for many applications, this is a small price to pay, especially if regular

expression models are coupled with other more complex algorithms on top of one

another (as was the case in this report). Improvements in terms of the computational

38

efficiency of regular expressions could be made. This would be useful for big data

applications where the python regular expression library would be too slow.

An illustration of a regular expression string matching task for different regular

expression formulations is given in figure 4.1.1. It is important to note that the task given

in this figure is not the one used in this report but a computationally intensive task is

purposely presented. This graph illustrates that if the task is defined specifically, even

the worst regular expression algorithms can achieve times less than a second.

Fig 4.1.1 - Regular expressions formulations and time complexity,

source: Russ Cox, 2007

This possibility for adaptation further reinforces regular expressions as a fitting first step

solution in the task of entity recognition and topic modeling. For best efficiency, other

string matching algorithms can be implemented, such as the Knuth, Morris, Pratt (KMP)

algorithm for string matching (Knuthf et al., 1974). If matching a given pattern to a given

text, this algorithm achieves linear time complexity (the complexity increases linearly

proportionally to the size of the input text).

39

4.2 Spacy based deep learning model discussion

The deep learning model meets lower standards judging by the calculated metrics.

As the highlighted example in figure 4.2.2.1

Fig 4.2.2.1 - Recognition of an entity not from the list of assays

These results suggest that the model has an ability to generalize. The proof is the

recognition of entities, not part of the entities in the annotated data, such as “TriVersa”.

This entity is not recognized by the regular expression-based model because it is not

part of the entity list for string matching. This example highlights the main compromise

points of each of the models. Nevertheless, the generalization can sometimes lead to

false-positives such as the example in figure 4.2.2.2.

Fig 4.2.2.2 - The deep learning model recognizing a nonexisting assay as a false positive

The ambiguous nature of assays also suggests that maybe a better framing of the

problem statement would yield better results.

Training. A possible improvement here would be to train using BIO annotated data. This

would convey better information about spans of entities and the model should be able to

understand the exact spans of the entities. Also accessing lower levels of the model

network and pre-training on fewer layers of the network will lower the inductive bias. This

will have to be done using a different library that allows lower-level access.

Data and algorithm. The named entity recognition task can be divided into smaller

subgroups. Not just recognizing “assay” as an entity, but more different variations of

assays. Transformer networks were not used directly here for named entity recognition

40

because they are resource demanding and many projects such as BioBERT(Lee et al.,

2020) have already undertaken a similar approach. Also, transformers are expected to

make a greater impact in more complex tasks like the ones mentioned in the next

heading.

4.3 Transformer based networks discussion

The results of the topic modeling and summarization tasks perform well and prove the

point that solving named entity recognition can serve as a baseline for more advanced

models.

The intuitive improvement to do here would be to fine-tune the transformers to the

downstream task of the given problem of assay recognition. Furthermore, certain

unsupervised techniques for topic modeling as proposed by (Schick & Schütze, 2020)

can be tried. Also, using an abstractive summarization model compared to the extractive

is possible. A good starting point would be (Zhang et al., 2020) where abstractive

summarization of scientific literature is performed.

4.4 Deployment discussion

The website serves as a great visualization tool and by offering the ability to try the code

in action. The ease of access, reproducibility, and robustness is more so demonstrated

by the custom data annotator, which in terms of deployment can be used for many

custom named entity recognition tasks without the human work of data annotation. The

results on GWAS show that although the regular expression/string matching model does

not perform to a satisfactory standard, it can still be utilized as a first step, even if the

end goal is another algorithm (as shown with the topic modeling task). This was one of

the key aims of this report, to create code that offers the means but is not the end.

41

5.Future work

Data. The quality of data annotation can be improved if this annotation pipeline and

website are coupled with a crowdsourcing annotation. In this way, annotators can have a

starting point done by the algorithms and this would make their task easier and less

time-consuming.

Named entity recognition. Divide the entity “assay” into more sub-groups and fine-tune

a transformer-based architecture for this specific problem as a multiple entity recognition

problem. Many studies have taken up this approach for different domains. A relevant

project fine-tuning the BERT transformer is BioBERT (Lee et al., 2020) for recognizing

biomedical entities. Also, Spacy’s new version 3.0 library which was recently published

could be explored.

Problem statement. The results of the topic modelling and summarization tasks perform

well and prove the point that solving named entity recognition can serve as a baseline

for more advanced models which go beyond the task of named entity recognition. One

group of models like this would be question answering transformer models. The entities

recognized through named entity recognition could be used to contextualize the training

data.

Another future opportunity is graph topic modeling. In this way, relationships between

assays could be extracted to better understand the context. Also representing the

learned graph and explaining the graph structures is a riveting challenge. These

architectures have been used in drug discovery (Kwak et al., 2020) and electronic health

records. A similar approach to (Zhu & Razavian, 2021) can be a fitting starting point.

42

6. Conclusion

The first hypothesis that a deep learning model would perform better than a string

matching/regular expression algorithm has not been proven. In regards to the second

hypothesis, the findings of this study suggest that complex models would be better

suited for other tasks that extract more information about the named entities rather than

entity recognition itself. The entity recognition can be performed by simpler and

computationally less intensive algorithms to a satisfactory degree.

The principal aim of this project was to create a simple, robust, adaptable text

processing pipeline. This pipeline does assay named entity recognition but also uses

transformer networks to augment the entity recognition. In addition to this, the automatic

data annotation tool saves time and resources. This tool can be used as a starting point

for many different natural language processing tasks beyond the scope of the thesis.

The work in this project is valuable for GWAS and MWAS studies for future data curation

and creation of backlog databases. These efforts are important because they help

researchers know which papers are closely related to their work thus enabling filtering by

their preferences.

In Data Science there is this tendency of going for the most complex and advanced deep

learning algorithm straight away. Sometimes, simpler and older algorithms can do as

well and even better. They clear the way for other advanced deep learning architectures

on top of their work. In this way, the complex architectures are used in problems for

which they are truly needed.

43

References

1. Aho, A. V., & Corasick, M. J. (1975). Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6), 333–340.
https://doi.org/10.1145/360825.360855

2. Atkinson, C., McCane, B., Szymanski, L., & Robins, A. (2021).
Pseudo-Rehearsal: Achieving Deep Reinforcement Learning without
Catastrophic Forgetting. Neurocomputing, 428, 291–307.
https://doi.org/10.1016/j.neucom.2020.11.050

3. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,
C., … Amodei, D. (2020). Language Models are Few-Shot Learners.
ArXiv:2005.14165 [Cs]. http://arxiv.org/abs/2005.14165

4. Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association
Studies. PLOS Computational Biology, 8(12), e1002822.
https://doi.org/10.1371/journal.pcbi.1002822

5. Deutsch, L. P., & Lampson, B. W. (1967). An online editor. Communications of
the ACM, 10(12), 793–799. https://doi.org/10.1145/363848.363863

6. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805
[Cs]. http://arxiv.org/abs/1810.04805

7. Doccano/doccano. (2021). [Python]. doccano.
https://github.com/doccano/doccano (Original work published 2018)

8. Garcia-Perez, I., Posma, J. M., Serrano-Contreras, J. I., Boulangé, C. L., Chan,
Q., Frost, G., Stamler, J., Elliott, P., Lindon, J. C., Holmes, E., & Nicholson, J. K.
(2020). Identifying unknown metabolites using NMR-based metabolic profiling
techniques. Nature Protocols, 15(8), 2538–2567.
https://doi.org/10.1038/s41596-020-0343-3

9. Ginsburg, B., Castonguay, P., Hrinchuk, O., Kuchaiev, O., Lavrukhin, V., Leary,
R., Li, J., Nguyen, H., Zhang, Y., & Cohen, J. M. (2020). Stochastic Gradient
Methods with Layer-wise Adaptive Moments for Training of Deep Networks.
ArXiv:1905.11286 [Cs, Stat]. http://arxiv.org/abs/1905.11286

10. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten
years of next-generation sequencing technologies. Nature Reviews Genetics,
17(6), 333–351. https://doi.org/10.1038/nrg.2016.49

11. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

12. Honnibal, M., & Montani, I. (2017). SpaCy · Industrial-strength Natural Language
Processing in Python. SpaCy 2: Natural Language Understanding with Bloom
Embeddings, Convolutional Neural Networks, and Incremental Parsing.
https://spacy.io/

13. Hu, Y., Sun, S., Rowlands, T., Beck, T., & Posma, J. M. (2021). Auto-CORPus:
Automated and Consistent Outputs from Research Publications. BioRxiv,
2021.01.08.425887. https://doi.org/10.1101/2021.01.08.425887

14. Jaccard, P. (1901). Etude de la distribution florale dans une portion des Alpes et
du Jura. Bulletin de La Societe Vaudoise Des Sciences Naturelles, 37, 547–579.
https://doi.org/10.5169/seals-266450

44

https://doi.org/10.1145/360825.360855
https://doi.org/10.1016/j.neucom.2020.11.050
http://arxiv.org/abs/2005.14165
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1145/363848.363863
http://arxiv.org/abs/1810.04805
https://github.com/doccano/doccano
https://doi.org/10.1038/s41596-020-0343-3
http://arxiv.org/abs/1905.11286
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1162/neco.1997.9.8.1735
https://spacy.io/
https://doi.org/10.1101/2021.01.08.425887
https://doi.org/10.5169/seals-266450

15. Kiss, T., & Strunk, J. (2006). Unsupervised Multilingual Sentence Boundary
Detection. Computational Linguistics, 32(4), 485–525.
https://doi.org/10.1162/coli.2006.32.4.485

16. Kitaev, N., Kaiser, Ł., & Levskaya, A. (2020). Reformer: The Efficient
Transformer. ArXiv:2001.04451 [Cs, Stat]. http://arxiv.org/abs/2001.04451

17. Kleene, S. (1956). Stephen Kleene. S. C. Kleene, “Representation of Events in
Nerve Nets and Finite Automata”, in C. E. Shannon and J. McCarthy, Eds.,
Automata Studies, Annals of Mathematics Studies No. 34, Princeton University
Press, 1956, Pp. 3-42. https://student.cs.uwaterloo.ca/~cs462/Hall/kleene.html

18. Knuthf, D. E., Morris, J. H., Jr. :l, & Pratt, V. R. (1974). Fast Pattern Matching in
Strings*.

19. Kwak, H., Lee, M., Yoon, S., Chang, J., Park, S., & Jung, K. (2020). Drug-disease
Graph: Predicting Adverse Drug Reaction Signals via Graph Neural Network with
Clinical Data. ArXiv:2004.00407 [Cs, Stat]. http://arxiv.org/abs/2004.00407

20. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020).
BioBERT: A pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4), 1234–1240.
https://doi.org/10.1093/bioinformatics/btz682

21. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O.,
Stoyanov, V., & Zettlemoyer, L. (2019). BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Comprehension.
https://arxiv.org/abs/1910.13461v1

22. Liu, P., Qiu, X., & Huang, X. (2016). Recurrent Neural Network for Text
Classification with Multi-Task Learning. ArXiv:1605.05101 [Cs].
http://arxiv.org/abs/1605.05101

23. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach. ArXiv:1907.11692 [Cs]. http://arxiv.org/abs/1907.11692

24. Long Short-Term Memory | Neural Computation | MIT Press Journals. (n.d.).
Retrieved March 4, 2021, from
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

25. Lovis, C., & Baud, R. H. (2000). Fast Exact String Pattern-matching Algorithms
Adapted to the Characteristics of the Medical Language. Journal of the American
Medical Informatics Association, 7(4), 378–391.
https://doi.org/10.1136/jamia.2000.0070378

26. Lu, W., Su, X., Klein, M. S., Lewis, I. A., Fiehn, O., & Rabinowitz, J. D. (2017).
Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annual
Review of Biochemistry, 86, 277–304.
https://doi.org/10.1146/annurev-biochem-061516-044952

27. McClanahan, C. (2010). History and Evolution of GPU Architecture. 7.
28. McCloskey, M., & Cohen, N. J. (1989). Catastrophic Interference in Connectionist

Networks: The Sequential Learning Problem. In G. H. Bower (Ed.), Psychology of
Learning and Motivation (Vol. 24, pp. 109–165). Academic Press.
https://doi.org/10.1016/S0079-7421(08)60536-8

29. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. ArXiv:1301.3781 [Cs].
http://arxiv.org/abs/1301.3781

30. Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: Fast and
Robust Models for Biomedical Natural Language Processing. Proceedings of the
18th BioNLP Workshop and Shared Task, 319–327.
https://doi.org/10.18653/v1/W19-5034

45

https://doi.org/10.1162/coli.2006.32.4.485
http://arxiv.org/abs/2001.04451
https://student.cs.uwaterloo.ca/~cs462/Hall/kleene.html
http://arxiv.org/abs/2004.00407
https://doi.org/10.1093/bioinformatics/btz682
https://arxiv.org/abs/1910.13461v1
http://arxiv.org/abs/1605.05101
http://arxiv.org/abs/1907.11692
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://doi.org/10.1136/jamia.2000.0070378
https://doi.org/10.1146/annurev-biochem-061516-044952
https://doi.org/10.1016/S0079-7421(08)60536-8
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/W19-5034

31. Neves, M., & Ševa, J. (2021). An extensive review of tools for manual annotation
of documents. Briefings in Bioinformatics, 22(1), 146–163.
https://doi.org/10.1093/bib/bbz130

32. Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel,
S. (2019). Language Models as Knowledge Bases?
https://arxiv.org/abs/1909.01066v2

33. Prodigy · An annotation tool for AI, Machine Learning & NLP. (n.d.). Prodigy.
Retrieved February 22, 2021, from https://prodi.gy

34. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (n.d.).
Language Models are Unsupervised Multitask Learners. 24.

35. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., & Liu, P. J. (2020). Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. ArXiv:1910.10683 [Cs, Stat].
http://arxiv.org/abs/1910.10683

36. Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter. ArXiv:1910.01108 [Cs].
http://arxiv.org/abs/1910.01108

37. Schick, T., & Schütze, H. (2020). Exploiting Cloze Questions for Few Shot Text
Classification and Natural Language Inference.
https://arxiv.org/abs/2001.07676v3

38. Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11), 2673–2681.
https://doi.org/10.1109/78.650093

39. Serrà, J., & Karatzoglou, A. (2017). Getting deep recommenders fit: Bloom
embeddings for sparse binary input/output networks. ArXiv:1706.03993 [Cs].
http://arxiv.org/abs/1706.03993

40. Streamlit Documentation. (n.d.). 150.
41. Thompson, K. (1968). Programming Techniques: Regular expression search

algorithm. Communications of the ACM, 11(6), 419–422.
https://doi.org/10.1145/363347.363387

42. Tikhomirov, M., Loukachevitch, N., Sirotina, A., & Dobrov, B. (2020). Using BERT
and Augmentation in Named Entity Recognition for Cybersecurity Domain. In E.
Métais, F. Meziane, H. Horacek, & P. Cimiano (Eds.), Natural Language
Processing and Information Systems (pp. 16–24). Springer International
Publishing. https://doi.org/10.1007/978-3-030-51310-8_2

43. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. ArXiv:1706.03762
[Cs]. http://arxiv.org/abs/1706.03762

44. Weischedel, Ralph, Palmer, Martha, Marcus, Mitchell, Hovy, Eduard, Pradhan,
Sameer, Ramshaw, Lance, Xue, Nianwen, Taylor, Ann, Kaufman, Jeff, Franchini,
Michelle, El-Bachouti, Mohammed, Belvin, Robert, & Houston, Ann. (n.d.).
OntoNotes Release 5.0 [Data set]. Linguistic Data Consortium.
https://doi.org/10.35111/XMHB-2B84

45. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2020).
XLNet: Generalized Autoregressive Pretraining for Language Understanding.
ArXiv:1906.08237 [Cs]. http://arxiv.org/abs/1906.08237

46. Yin, W., Hay, J., & Roth, D. (2019). Benchmarking Zero-shot Text Classification:
Datasets, Evaluation and Entailment Approach. Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 3914–3923. https://doi.org/10.18653/v1/D19-1404

46

https://doi.org/10.1093/bib/bbz130
https://arxiv.org/abs/1909.01066v2
https://prodi.gy/
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2001.07676v3
https://doi.org/10.1109/78.650093
http://arxiv.org/abs/1706.03993
https://doi.org/10.1145/363347.363387
https://doi.org/10.1007/978-3-030-51310-8_2
http://arxiv.org/abs/1706.03762
https://doi.org/10.35111/XMHB-2B84
http://arxiv.org/abs/1906.08237
https://doi.org/10.18653/v1/D19-1404

47. Zhang, J., Zhao, Y., Saleh, M., & Liu, P. J. (2020). PEGASUS: Pre-training with
Extracted Gap-sentences for Abstractive Summarization. ArXiv:1912.08777 [Cs].
http://arxiv.org/abs/1912.08777

48. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2020). UNet++:
Redesigning Skip Connections to Exploit Multiscale Features in Image
Segmentation. IEEE Transactions on Medical Imaging, 39(6), 1856–1867.
https://doi.org/10.1109/TMI.2019.2959609

49. Zhu, W., & Razavian, N. (2021). Variationally Regularized Graph-based
Representation Learning for Electronic Health Records. ArXiv:1912.03761 [Cs,
Stat]. http://arxiv.org/abs/1912.03761

47

http://arxiv.org/abs/1912.08777
https://doi.org/10.1109/TMI.2019.2959609
http://arxiv.org/abs/1912.03761

Appendix A

The first mention of regular expressions is in a paper by Stephen Kleene (Kleene, 1956).

The intended aim was to create a software notation that would describe the work of

deterministic finite-state automata (DFA). They were used for string matching. The steps

of how DFA describes text strings are illustrated in figure 2.1.1.

Fig 2.1.1. - Overview of DFA for string matching, Source: Russ Cox, 2007

Afterward, a lot of different implementations were made, most notable were the ones in

Unix systems (Deutsch & Lampson, 1967) and also a multi-state non-deterministic finite

automata (NFA) formulation of regular expressions, which are used in many practical

implementations today (Thompson, 1968). In figure 2.1.2 The equivalence between

regular expressions and finite state automata is illustrated.

48

Fig 2.1.2 - Regular expressions equivalence to finite state automata,

source: CSE341-S.Tanimoto

The following is the list of assays compiled by experts and used in this project:

1H NMR
H1 NMR
(1)H NMR
H(1) NMR
NMR
1H-NMR
1H-NMR
Proton NMR
Nuclear Magnetic Resonance
spectroscopy
NMR spectroscopy
600 MHz NMR
500 MHz NMR
750 MHz NMR
1D NMR
1D-NMR
diffusion-edited NMR
J-resolved NMR spectroscopy
J-resolved
1H-1H J-resolved
JRes
J-Res
Jres
13C NMR

13C NMR
Carbon NMR
13-carbon NMR
Correlation spectroscopy
1H-1H correlation spectroscopy
COSY
Total correlation spectroscopy
1H-1H total correlation
spectroscopy
TOCSY
2D 1H-13C heteronuclear single
quantum coherence
1H-13C heteronuclear single
quantum coherence
heteronuclear single quantum
coherence spectroscopy
HSQC
2D 1H-13C heteronuclear
multiple-bond quantum
coherence
1H-13C heteronuclear
multiple-bond quantum
coherence

heteronuclear multiple-bond
correlation
hetero-nuclear multiple bond
correlation
hetero-nuclear multiple-bond
correlation spectroscopy
HMBC
LC-NMR-MS
2D-NMR
1D proton NMR
Homonuclear NMR
Homo-nuclear NMR
13C Distortionless Enhancement
by Polarization Transfer
DEPT
HPLC-NMR
HPLC-NMR-MS
LC-SPE-NMR
CPMG
Carr-Purcell-Meiboom-Gill
Mass spectrometry
mass spectrometer
MS
tandem mass spectrometry

49

MS/MS
MS-MS
Gas chromatography
Gas chromatography mass
spectrometry
Gas chromatography coupled
mass spectrometry
Gas chromatography-coupled
mass spectrometry
GCMS
GS-MS
GC/MS
GC-EI-TOF
Electron ionization
EI
flame ionization detector
FID
GCxGC
Liquid chromatography
Liquid chromatography mass
spectrometry
LC-MS
LC/MS
Ultra-Performance Liquid
Chromatography Mass
Spectrometry
UPLC-MS
HPLC
High-pressure liquid
chromatography
High performance liquid
chromatography
High-performance liquid
chromatography
Ultra-Performance Liquid
Chromatography
Ultra Performance LC
ultra-fast liquid chromatography
UHPLC-QTOF-MS
reverse-phase HPLC
reversed-phase HPLC
RP
Hydrophilic interaction
chromatography
hydrophilic interaction liquid
chromatography
HILIC
LC-MS/MS
LC-ESI-QQ
Tandem Quadrupole
QQ
Single Quadrupole
Electrospray ionization
Electrospray ionisation
Electro-spray ionization
Electro-spray ionisation

ESI
quadrupole
TOF
Time-of-flight
Time of flight
QTOF
Quadrupole Time-of-flight
QQQ
QqQ
Triple quadrupole
TQMS
quadrupole mass analyser
QMS
Quadrupole mass filter
Secondary ion mass
spectrometry
SIMS
secondary electrospray
ionization
SESI
matrix-assisted laser
desorption/ionization
MALDI
direct analysis in real time
DART
Nanospray desorption
electrospray ionization
desorption ionization
DI
Ion mobility spectrometry
IMS
Ion mobility spectrometry-mass
spectrometry
IMS/MS
IMMS
Surface-enhanced laser
desorption/ionization
SELDI
Direct-injection electrospray
ionization
Direct Flow Injection Mass
Spectrometry
Desorption electrospray
ionization
DESI
DIMS
DI-MS
Fourier transform ion cyclotron
resonance
FTICR
FT-ICR
Orbitrap
Ion trap
quadrupole ion trap
Inductively coupled plasma
mass spectrometry

ICP-MS
IEC
Ion exchange chromatography
Ion-exchange chromatography
Solid Phase Extraction
SPE
Lipidomics
Lipidomics profiling
Electrophoresis
Capillary zone electrophoresis
Capillary electrophoresis
Biocrates
Nightingale
Metabolon
Thermo
Waters
Agilent
Thermo Fisher
Bruker
Bruker BioSpin
JEOL
Shimadzu
Varian
SCIEX
Perkin Elmer
LC-Mass spectrometry
(LC)
gas chromatography
chromatography
spectroscopy
spectrometry
gas chromatography
gas chromatography-mass
spectrometry
gas chromatography coupled
mass spectrometry
gas chromatography-coupled
mass spectrometry
liquid chromatography
chromatography
spectroscopy
1H NMR
ionization
electrophoresis
sequencing
ionisation
spectroscopic
chromatographic
spectrometer
quadrupole time-of-flight
Illumina
Perlegen
Affymetrix
PCR
Polymerase chain reaction

50

Appendix B

In the following table, all the packages and versions used are listed. It is important to note that

not all packages are part of the final solution, some have been used for testing, prototyping, and

debugging. Also, many of the packages can be substituted with others. The requirements.txt file

for running the website is available as a separate file on the Github repository.

Package Version

beautifulsoup4 4.6.3
en-core-web-sm 2.2.5
gensim 3.6.0
google 2.0.3
google-api-core 1.16.0
google-api-python-client 1.7.12
google-auth 1.27.0
google-auth-httplib2 0.0.4
google-auth-oauthlib 0.4.2
google-cloud-core 1.0.3
google-cloud-translate 1.5.0
google-colab 1.0.0
ipykernel 4.10.1
ipython 5.5.0
ipython-genutils 0.2.0
ipython-sql 0.3.9
ipywidgets 7.6.3
jsonschema 2.6.0
jupyter 1.0.0
jupyter-client 5.3.5

jupyter-console 5.2.0
jupyter-core 4.7.1
jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.0
nltk 3.2.5
notebook 5.3.1
numpy 1.19.5
pandas 1.1.5
pathlib 1.0.1
Pillow 7.0.0
pip 19.3.1
pip-tools 4.5.1
plotly 4.4.1
PyDrive 1.3.1
python-utils 2.5.6
regex 2019.12.20
scikit-learn 0.22.2.post1
scipy 1.4.1
sklearn-pandas 1.8.0
spacy 2.2.4
sympy 1.7.1
thinc 7.4.0

51

